Рассеивающие линзы для дальнозоркости

Рассеивающие линзы для дальнозоркости

Пособие по физике «Геометрическая оптика».

Очки. Недостатки зрения и их исправление.

Благодаря аккомодации изображение рассматриваемых предметов получается как раз на сетчатке глаза. Это выполняется, если глаз нормальный.

Глаз называется нормальным, если он в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке. Наиболее распространены два недостатка глаза — близорукость и дальнозоркость.

Близоруким называется такой глаз, у которого фокус при спокойном состоянии глазной мышцы лежит внутри глаза. Близорукость может быть обусловлена большим удалением сетчатки от хрусталика по сравнению с нормальным глазом. Если предмет расположен на расстоянии 25 см от близорукого глаза, то изображение предмета получится не на сетчатке, а ближе к хрусталику, впереди сетчатки. Чтобы изображение оказалось на сетчатке, нужно приблизить предмет к глазу. Поэтому у близорукого глаза расстояние наилучшего видения меньше 25 см.

Дальнозорким называется глаз, у которого фокус при спокойном состоянии глазной мышцы лежит за сетчаткой. Дальнозоркость может быть обусловлена тем, что сетчатка расположена ближе к хрусталику по сравнению с нормальным глазом. Изображение предмета получается за сетчаткой такого глаза. Если предмет удалить от глаза, то изображение попадёт на сетчатку, отсюда и название этого недостатка — дальнозоркость.

Разница в расположении сетчатки даже в пределах одного миллиметра уже может приводить к заметной близорукости или дальнозоркости.

Люди, имевшие в молодости нормальное зрение, в пожилом возрасте становятся дальнозоркими. Это объясняется тем, что мышцы, сжимающие хрусталик, ослабевают и способность к аккомодации уменьшается. Происходит это и из-за уплотнения хрусталика, теряющего способность сжиматься.

Близорукость и дальнозоркость устраняются применением линз. Изобретение очков явилось великим благом для людей, имеющих недостатки зрения.

Какие же линзы следует применять для устранения этих недостатков зрения?

У близорукого глаза изображение получается внутри глаза впереди сетчатки. Чтобы оно передвинулось на сетчатку, нужно уменьшить оптическую силу преломляющей системы глаза. Для этого применяют рассеивающую линзу.

Оптическую силу системы дальнозоркого глаза нужно, наоборот, усилить, чтобы изображение попало на сетчатку. Для этого используют собирающую линзу

Итак, для исправления близорукости применяют очки с вогнутыми, рассеивающими линзами. Если, например, человек носит очки, оптическая сила которых равна -0,5 дптр (или -2 дптр, -3,5 дптр), то значит он близорукий.

В очках для дальнозорких глаз используют выпуклые, собирающие линзы. Такие очки могут иметь, например, оптическую силу +0,5 дптр, +3 дптр, +4,25 дптр.

Рассеивающие линзы для дальнозоркости

Близорукий человек плохо видит удаленные предметы. Это означает, что их изображение при этом находится перед сетчаткой. Для увеличения фокусного расстояния («для ослабления» фокусирующего действия хрусталика) необходимо добавить рассеивающую линзу — очки с отрицательными диоптриями.

У дальнозоркого все наоборот: он плохо видит вблизи. Это означает, что изображение близкого предмета находится у него за сетчаткой и хрусталик не может в достаточной мере увеличить свою кривизну, чтобы его фокусное расстояние стало короче. Так часто бывает со старыми людьми — их глаза «слабеют». Поэтому для такого глаза помощью является собирающая линза — очки с положительными диоптриями.

Слово «диоптрия» обозначает единицу измерения оптической силы линзы (D — величины, обратной фокусному расстоянию: D = 1/F). Если фокусное расстояние линзы выразить в метрах, то обратная величина получится в диоптриях (дптр). Например: «очки плюс 4» означает, что линза этих очков — собирающая; фокусное расстояние ее равно 1/4 м, т.е. 25 см. Знак «минус» означает, что используется рассеивающая линза.

Какие виды линз можно использовать при близорукости?

Здравствуйте, дорогие читатели! На современном этапе развития существует множество оптических приспособлений, позволяющих людям с плохим зрением хорошо видеть. Знаете ли Вы, что в зависимости от патологии линзы подбираются индивидуально? Какие линзы используются при близорукости и как правильно провести необходимую коррекцию? Добро пожаловать на блог!

Из чего состоит оптическая система глаза и механизм «поломки» при миопиях

Свет, перед тем как попасть на сетчатку (образование, состоящее из рецепторных клеток, которые способны конвертировать изображение в понятные для организма нервные импульсы, расположено на глазном дне), проходит различные преобразования. Луч поэтапно преломляется сначала в роговице, затем проходит зрачок и через переднюю камеру глаза попадает на хрусталик.

Хрусталик – основной универсальный оптический механизм, способный изменять форму, благодаря чему происходит адаптация глаза к дальности видения. Затем луч проходит через заднюю камеру и стекловидное тело. Стекловидное тело – основное вещество глаза, состоящее из коллагеновых волокон и имеющее вид гелеобразной массы.

При близорукости изображение дальнего предмета не достегает дна глаза, а остается на этапе стекловидного тела, из-за чего человек теряет четкость контуров, происходит искажение цветовой гаммы, и больной в буквальном смысле «не видит дальше собственного носа».

При дальнозоркости наоборот – изображение близко расположенного предмета «перескакивает» через сетчатку. Человек не может видеть вблизи.

Виды оптики

Принцип действия оптических приспособлений основан на преломлении световых лучей. Общепринято, что линзы могут быть вогнутыми или выпуклыми, в зависимости от плоскости их поверхностей они способны совершенно по-разному преломлять световые лучи. Таким образом, разная вспомогательная оптика может компенсировать недостаточность преломления собственной оптической системы глаза, по типу «костылей».

От изменения направления лучей, которые проходят через линзы их делят на рассеивающие или собирающие.

Собирающая — в обязательном порядке должна иметь вогнутую поверхность, благодаря которой прямые лучи собираются в одну точку. Механизм используется для лечения дальнозоркости – так как благодаря механизму преломления лучей, проходя через оптическую систему глазного яблока, изображение фиксируется четко на сетчатке, а не за ней.

Для близоруких людей необходимы рассеивающие, так как они действуют совершенно противоположно, веерообразно расширяя лучи, так что изображение достигает сетчатки.

По способу коррекции близорукости линзы можно разделить на:

  • Сферические – выпуклые с одной стороны.
  • Торические – предназначенные для сопутствующей коррекции астигамтизма (заболевание, при котором происходит изменение роговицы илихрусталика). Они имеют сфероцилиндрическую форму, благодаря чему происходит коррекция анатомических дефектов структур глаза.
  • Бифокальные – универсальные, способные корректировать и близорукость и дальнозоркость.
  • Перифокальные – благодаря фильтрирующей способности способны снизить воздействие света на глаз, при этом нагрузка на сетчатку значительно снижается.
  • Мультифокальные – разделенные на несколько зон с разной преломляющей способностью, благодаря чему корректируется зрение в разных направлениях и дальности.

Сколько разрешено носить линзы?

Линза одевается поверх роговицы и представляет собой инородное тело, способное вызвать воспалительные изменения. Поэтому очень важно придерживаться правил ношения оптики, в частности – не превышать максимально допустимого времени. Для этого создаются новые методики, позволяющие пролонгировать ношение оптики без последствий:

  • Дневные рассчитаны на 2 недели, месяц, квартал и год – рекомендовано ношение их только в дневное время и отдых глаз во время сна. Некоторые изготовители предварительно оговаривают максимальные сроки, в которые их можно не снимать.
  • Ночные линзы – применяются только в ночное время, благодаря ее свойствам происходит распределение слезной жидкости и утолщение роговицы. Таким образом, после сна они снимаются и человек способен прекрасно видеть без использования коррекции в течение 24-48 часов.

До скорых встреч, уважаемый читатель! Надеюсь, информация была полезной и познавательной! Подписывайтесь на обновления нашего сайта. У нас вы найдете еще массу интересного!

Дефекты зрения

У человека с хорошим зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. При нарушении зрения изображения удаленных предметов в случае ненапряженного глаза могут оказаться либо перед сетчаткой — близорукость , либо за сетчаткой — дальнозоркость (рис. 4.2.1).

Изображение удаленного предмета в глазе: a – нормальный глаз; b – близорукий глаз; с – дальнозоркий глаз.

Расстояние наилучшего зрения у близорукого глаза меньше, а у дальнозоркого больше, чем у нормального глаза. Для исправления дефекта зрения служат очки. Для дальнозоркого глаза необходимы очки с положительной оптической силой (собирающие линзы), для близорукого – с отрицательной оптической силой (рассеивающие линзы).

Для наблюдения удаленных предметов оптическая сила линз должна быть такой, чтобы параллельные пучки фокусировались на сетчатке глаза. Глаз должен видеть через очки мнимое прямое изображение удаленного предмета, находящееся в дальней точке аккомодации данного глаза. Если, например, дальняя точка аккомодации близорукого глаза находится на расстоянии 80 см, то применяя формулу тонкой линзы получим:

d = 7 , f = –0,8 м, следовательно, дптр.

Следует отметить, что у дальнозоркого глаза дальняя точка аккомодации мнимая, то есть ненапряженный глаз фокусирует на сетчатке сходящийся пучок лучей. Потому при рассмотрении удаленных предметов очки для дальнозоркого глаза должны превращать параллельный пучок лучей в сходящийся, то есть обладать положительной оптической силой.

Очки для «ближнего зрения» (например, для чтения) должны создавать мнимое изображение предмета, находящегося на расстоянии d = 25 см (то есть на расстоянии наилучшего зрения нормального глаза), на расстоянии наилучшего зрения данного глаза. Пусть, например, близорукий глаз имеет расстояние наилучшего зрения 16 см. По формуле тонкой линзы получим: f = –0,16 м, следовательно, дптр. Вследствие сужения области аккомодации у многих людей очки для ближнего зрения должны обладать большей (по модулю) оптической силой по сравнению с очками для рассматривания удаленных предметов.

Рис. 4.2.2 иллюстрирует коррекцию дальнозоркого и близорукого глаза с помощью очков.

Рисунок 4.2.2. Подбор очков для чтения для дальнозоркого (a) и близорукого (b) глаза.

Предмет A располагается на расстоянии d = d = 25 см наилучшего зрения нормального глаза. Мнимое изображение A’ располагается на расстоянии f, равном расстоянию наилучшего зрения данного глаза.

Кратковременная парктическая работа

Задание: исправьте дефекты зрения, подобрав соответствующие линзы.

Другие дефекты глаза.

Все недостатки, присущие оптическим системам, характерны и для глаза. Например, дифракция ограни­чивает разрешающую способность глаза (остроту зрения): нельзя увидеть раздельно две точки, если они расположены под углом, меньшим 1′.

Ознакомьтесь так же:  Дальнозоркость как подобрать очки

Хроматическая аберрация также присуща глазу. Однако из-за чувствительности сетчатки глаза к очень небольшой части элект­ ромагнитного спектра, а также из-за того, что показатель преломления хрусталика возрастает к его центру, эта аберрация ослаблена. По этой же причине ослаблена и сферическая абер­рация, тем более, что зрачок пропускает весьма узкий пучок.

Очевидно, что на сетчатке возникает перевернутое изобра­ жение всех предметов. Но мозг, перерабатывая полученную зри­ тельную информацию и сопоставляя ее с опытом, воспринимает предметы правильно.

Бинокулярное зрение.

Р ассматривая предмет двумя глазами, мы получаем на сетчатке каждого из них несколько различные изображения. В то же время мы воспринимаем один предмет, но видим его стереоскопически, т. е. объемно. Представление о глубине пространства возникает благодаря тому, что, направляя оба глаза на один объект, мы усилием глазных мышц поворачи­ваем их так, чтобы их оптические оси пересекались на предмете. Угол a между осями называется углом конвергенции . Расстоя­ние между глазами (база) равно b= 5 см, а расстояние до предмета d >25 см . Следовательно, угол конвергенции a = b / d меняется от нуля (дальняя точка) до 10° (ближняя точка).

Одновременные и непроизвольные аккомодация и конверген­ция позволяют оценить глубину пространства и расстояние до предметов значительно лучше, чем при зрении одним глазом. Увеличивая искусственно базу с помощью биноклей или стерео­труб, можно оценить расстояние до удаленных предметов точнее, чем невооруженным глазом.

Урок физики по теме «Глаз и зрение». 8-й класс

Разделы: Физика

Учебник: Перышкин А.В. Физика. 8 класс: Учебник для общеобразовательных учебных заведений. – М.: Дрофа, 2013.

Тип урока: изучение нового материала по теме «Световые явления».

Цели урока:

  • Учащиеся должны повторить и обобщить знания по теме «Линзы;
  • oцeнить свои умения применять знания об оптических системах;
  • познакомиться с устройством глаза и назначением отдельных его элементов;
  • познакомиться с болезнями глаза и способами коррекции зрения научиться применять знания из биологии к объяснению механизма зрения;
  • систематизировать имеющиеся знания об оптических системах и расширить их.

Ученик должен научиться

  • применять знания и умения, полученные в курсе биологии, к решению физических задач;
  • усвоить понятие расстояние наилучшего зрения, «близорукость» и «дальнозоркость», усвоить знания о бинокулярном зрении, поле зрения на уровне применения их в знакомой ситуации.

Оборудование и пособия: модель «Строение глаза», мультимедийный проектор, индивидуальные карточки, магнитная доска, презентация по теме «Глаз и зрение» (см. Презентация).

Ход урока

1. Организационный момент.

Приветствие, проверка готовности к уроку, запись темы урока в рабочие тетради. (Слайд 1)

2. Проверка домашнего задания, подготовка к усвоению новых знаний (актуализация знаний).

Входной тест: (Слайд 2) (см. Приложение 1)

Линзой называют.
а) Прозрачное тело, ограниченное сферической поверхностью.
б) Прозрачное тело.
в) Тело, ограниченное сферической поверхностью.

На рисунке изображены стеклянные линзы. Какие из них являются собирающими?

а) 1.
б) 2.
в) 3.

Какой буквой обозначается главный фокус линзы?
а) F;
б) О;
в) Д.

В каких единицах измерения дается оптическая сила линзы?
а) мм;
б) кг;
в) дптр;

Фокусное расстояние линзы F = -20 см. Какая это линза?
а) собирающая;
б) рассеивающая.

Оптическая сила линзы Д = 2 дптр. Какая это линза?
а) собирающая;
б) рассеивающая.

Фронтальный опрос (Слайд 3)

  • Что изображено на рисунке 1, обозначенное «1»?.
  • Что обозначено точкой «О»?
  • Чем отличаются выпуклые линзы от вогнутых линз?
  • Как называется линия обозначенная «2»?
  • Что называют оптической силой линзы? (запись на доске)
  • Какие два луча используют для построения изображения в линзах?
  • Какие изображения даёт: а) собирающая линза? б) рассеивающая линза?

3. Объяснение новой темы.

(Слайд 4)

Мы живём в прекрасном мире, богатом красками, звуками, запахами. Информация о происходящем в окружающей среде мы получаем через органы чувств – зрения, слуха, осязание, вкуса и обоняния. Внешний мир мы видим благодаря зрению. Орган зрения играет огромную роль в жизни человека. Более 90% информации об окружающем мире мы получаем с помощью глаз.

Глаз – это орган, который можно сравнить с окном в окружающий мир, его называют ещё «живым» фотоаппаратом.

Всё пространство вокруг человека заполнено различным излучением. И только малая его часть воспринимается органом зрения. Свет или видимое излучение – это электромагнитная волна длиной излучения от 400 до 760 нм. Другие волны не вызывают зрительных ощущений. Наши глаза чувствительны только к определенному, сравнительно узкому интервалу длин волн.

Познакомимся со строением глаза. (Слайд 5)

  • глазного яблока, соединенного
  • зрительным нервом с головным мозгом, и
  • вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко). (Слайд 6)
  • Глазное яблоко защищено плотной оболочкой, называемой склерой.
  • Передняя (прозрачная) часть склеры называется роговицей.
  • За роговицей расположена радужная оболочка, которая у людей может иметь различный цвет.
  • В радужный оболочке есть небольшое отверстие – зрачок. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.
  • За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу – хрусталик.
  • Хрусталик окружен мышцами, прикрепляющими его к склере.
  • За хрусталиком расположено стекловидное тело.
  • Задняя часть склеры – глазное дно — покрыто сетчатой оболочкой (сетчаткой). Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов? (Слайд 7)

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительное, уменьшенные и обратные изображения предметов. Попав на окончания зрительного нерва, свет раздражает эти окончания. Эти раздражения передаются в мозг, и у человека появляются зрительные ощущения: он видит предметы.

Характеристика изображения

Изображение предмета, возникающее на сетчатке глаза, является перевернутым.

Первым это доказал, построив ход лучей в оптической системе глаза, был немецкий астроном И. Кеплер (Портрет учёного) (Слайд 8)Вся эта система аналогична оптической системе собирающей линзы.

Но почему тогда мы видим предметы неперевернутыми? Процесс зрения непрерывно корректируется мозгом. В свое время английский поэт Уильям Блейк подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

Фотоаппарат представляет собой устройство, принцип действия которого подобен действию человеческого глаза. (Слайд 8)

Глаз приспособлен к работе в различной интенсивности освещения (благодаря адаптации)

Способность глаза приспосабливаться к видению, как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio — приспособление). Благодаря аккомодации чело­веку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика — на сетчатке глаза.

Однако при очень близком расположении рассматриваемого пред­мета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Чувствительность глаза к свету может меняться в миллиарды раз, благодаря изменению диаметра зрачка.

Приспособляемость глаза может вызвать иллюзии – наблюдаемый предмет нам таким, каков он есть на самом деле.. (Слайд 10-13)

У человека два глаза. Какое преимущество дает зрение двумя глазами?

Во-первых, мы можем различить расстояние между предметами. Это позволяет видеть предмет объемным, а не плоским. Во-вторых, увеличивает поле зрения. . Глаз обладает свойствам адаптации – способностью менять свою чувствительность в зависимости от величины светового потока. Глаз очень чувствительный аппарат.

Отклонения зрения (деферкты)

В процессе старения организма в глазах человека могут возникнуть отклонения от нормы, вследствие чего нарушаются основные условия наилучшего зрения, так как хрусталик теряет эластичность, способность менять свою кривизну. Эти отклонения называются дефектами зрения. Изображение близко расположенных предметов расплывается – развивается дальнозоркость. Другой дефект зрения – близорукость, когда люди, наоборот, плохо видят удаленные предметы. (Слайд 14)

Причиной дальнозоркости и близорукости могут быть и врожденные изменения глазного яблока. (Слайд 15) При близорукости изображение предмета фиксируется перед сетчаткой и поэтому воспринимается как расплывчатое. (Слайд 16)При дальнозоркости изображение предмета фиксируется за сетчаткой и тоже воспринимается как расплывчатое.

Очки:

(Слайд 17) Для исправления дефектов зрения с древних времён и по наши дни применяют очки. Самые старые очки были найдены в гробнице древнеегипетского фараона Тутанхамона. Это были два тончайших спила изумруда, соединенных бронзовыми пластинками в виде оправы. В древней Греции на острове Крит были найдены оптические линзы из шлифованного горного хрусталя, которые также можно было использовать для исправления недостатков зрения. В древнем Риме в витринах харчевен выставляли стеклянные шары, наполненные водой. Было замечено, что предметы, помещенные в воду внутрь таких шаров выглядят больше, чем на самом деле. Хозяева пытались привлечь посетителей необычайно большими плодами и фруктами. (Слайд 18)Первым достоверным свидетельством использования очков при близорукости считается портрет папы Льва X, выполненный Рафаэлем (1517—1519). Лев X был близорук и, отправляясь на охоту, надевал очки. Известный итальянский ученый Леонардода Винчи первым сделал попытку переноса естественнонаучного знания в оптике в прикладную область. Прошло немало времени, чтобы простейшие линзы превратились в современные бинокли, микроскопы, телескопы и другие оптические приборы, наконец, просто в очки .

Очки – простейший медицинский прибор. Близорукость и дальнозоркость исправляют (компенсируют) применением линз. Сейчас вместо очков часто используют контактные линзы, сделанные из особой прозрачной пластмассы. Они накладываются на веко непосредственно, на глазное яблоко. Контактные линзы не требуют никакой оправы, не запотевают, незаметны.

Какие же линзы следует применять в очках?

(Слайд 19) При близорукости необходимо изображение предмета отодвинуть от хрусталика и переместить на сетчатку. Для этого применяют линзы вынутые – рассеивающие свет с отрицательной оптической силой.

(Слайд 20) При дальнозоркости изображение предмета за сетчаткой перемещают с помощью линз выпуклых – собирающих свет. Оптическая сила таких линз — положительная. (Таблица «Линзы, применяемые в очках для исправления близорукости и дальнозоркости»).

4. Зарядка для глаз (физкультминутка).

(Слайд 21)

Ответьте на следующие вопросы:

  1. Врач-окулист выписывает пациенту очки, оптическая сила которых равна +2 дптр. Какой недостаток зрения исправляют эти очки? (дальнозоркость).
  2. Если человек близорук, то какие очки ему необходимы: +1,5 дптр или -1,5 дптр? (-1,5 дптр)

Глаз – это живой оптический прибор. Мышцы глаза ученика за один учебный день испытывает такую же нагрузку, какую испытывают мышцы его рук и торса, если он пытался бы поднять и удержать над головой штангу весом предназначенного для среднего профессионала-атлета. Чтобы спасти глаза от перенапряжения, необходима специальная гимнастика, которая восстанавливает зрение.

Ознакомьтесь так же:  Врожденные глаукомы

Простейшие упражнения можно использовать в любых условиях, в том числе и в школе, где глаза устают больше всего.

Сделаем «Гимнастику для глаз»:

Зажмурь изо всех сил глаза, а потом открой их. Повтори это 4-6 раз.

Переводи взгляд с ближних предметов (рама окна) на дальние предметы (на линии горизонта). Делай круговые движения глазами: по часовой стрелке и против.

Вытяни вперед руку. Следи взглядом за кончиком пальца, медленно приближая его к носу, а потом так же медленно отодвигая обратно. Повтори 3 раза.

На карточках (см. Приложение 2)

Упражнение № 1. «Игра в прятки»

  1. Сядьте прямо и расслабьтесь. Шея и голова должны быть на одной линии.
  2. Ладонями закройте глаза, но не давите на них, свет не должен проникать в глаза.
  3. Попытайтесь вспомнить что-нибудь приятное.
  4. Подержите так несколько секунд и постепенно приоткройте глаза.
  5. Проделаем так ещё 2 раза.

Упражнение № 2. «Сквозь пальцы».

  1. Согните руки в локтях, поставьте локти на парту, так чтобы руки были чуть ниже уровня глаз.
  2. Разомкните пальцы.
  3. Делайте плавно повороты и смотрите вдаль сквозь пальцы.

Если вы делаете всё правильно, то руки должны проплывать мимо вас. Вам должно казаться, что руки движутся.

Упражнение № 3. Основной комплекс для укрепления мышц глаза.

  1. сядьте удобно, посмотрите вдаль в окно. Глубоко и медленно вдыхая, сводим глаза на переносице и остановим на 2 секунды и, выдыхая, возвращаем их в исходное положение.
  2. Проделаем так ещё 2 раза.

Упражнение № 4

  1. Вдыхая, опускаем глаза вниз и затем медленно поворачиваем их по часовой стрелке и останавливаемся в верхней точке (на 12-ти).
  2. Не задерживаясь, выдыхая, опускаем глаза до исходного положения (до 6).
  3. Закрываем глаза на несколько секунд

Для нормального формирования зрения и его сохранение необходимо соблюдать простые правила:

Гигиена зрения. (Слайд 22)

  1. Не рекомендуется читать в движущемся транспорте, так как постоянно меняется кривизна хрусталика.
  2. Не рекомендуется держать книги на расстоянии ближе 30 см, потому что мышечный аппарат глаза сильно напрягается.
  3. Читать, писать в хорошем освещенном помещении, освещение должно падать слева.
  4. В школьных мастерских при работе на станках, надевать защитные очки, так как инородные предметы могут попасть в глаза.
  5. Очень вредное действие на зрение оказывает курение, алкоголь, наркотики. Они поражают зрительный нерв, что приводит к потере зрения.

Сегодня на уроке мы говорили о значении зрения в нашей жизни. Изучили строение оптической системы и свойства глаза. А так же узнали с помощью, каких линз можно исправлять близорукость и дальнозоркость. Обо всем этом мы узнали благодаря биологии, истории, и конечно физике.

5. Выходной контроль. Закрепление изученного материала.

Чтобы выяснить как вы усвоили новый материал, мы выполним тест.

Тест: (Слайд 23) (см. Приложение 3)

Какая часть глазного яблока является двояковыпуклой линзой?
а) хрусталик;
б) роговица

На какой части глазного яблока образуется изображение предмета?
а) на сетчатке;
б) на роговице

Способность глаза приспосабливаться к видению, как на близком, так и так и на более далёком расстоянии:
а) адаптацией;
б) аккомодацией;
в) иллюзией зрения

При близорукости применяют очки
а) с рассеивающими линзами;
б) с собирающими линзами

При дальнозоркости применяют очки
а) с рассеивающими линзами;
б) с собирающими линзами.

Тест выполненный на листах, проверяется учащимися (меняются).

  • 5 прав. ответов – «5»
  • 4 прав. ответа – «4»
  • 3 прав. ответа – «3»
  • 2 прав. ответа – «2»

6. Поведение итогов урока, выставление оценок.

Каждому ученику вручаются памятки «Гимнастика для глаз» и «Гигиена зрения».

7. Домашнее задание.

§ 6-7 стр.185-188 (Слайд 24) Доклады: Фотоаппарат, Проекционные аппараты, Лупа, Телескоп, Микроскоп

Список литературы:

  1. Перышкин Физика: Учебник для 8 класса общеобразовательных учреждений / Перышкин. – М .: Дрофа, 2013.
  2. Лукашик В.Н. Сборник задач по физике для 7-9 классов общеобразовательных учреждений / В.И. Лукашик, Е.В. Иванова. – М .: Просвещение, 2012.
  3. Демченко Е.А. Нестандартные уроки физики 7-11 классы. – Волгоград, 2011.
  4. Кирик Л.А. Физика – 9. Разноуровневые самостоятельные и контрольные работы. Илекса, 2010.
  5. Медицинская энциклопедия / сост. М.П. Обрамян. – М.: Медицина, т.3 1983.

Механизм действия линз. Причина аккомодации. Близорукость и дальнозоркость

Содержание:

↑ Механизм действия линз

Давайте займемся объяснением функционирования прибора, занимающего достаточно важное место в жизни многих людей. Как известно, очки корректируют процесс зрительного восприятия у людей с ослабленным зрением. В очках используются различные виды линз. Именно они – линзы – и являются прибором, изменяющим траекторию движения световых лучей – т.е. преломляющим их.

Не хочется сильно забегать вперед, однако следует напомнить, что в Главе, посвященной механике элементарных частиц, мы уделили большое внимание причинам и механизму изменения траектории движущихся частиц. И основными причинами изменения траектории, если вы помните, были названы Поля Притяжения и Отталкивания. Так что в этой статье мы лишь постараемся конкретным образом применить уже раскрытые нами процессы.

Помимо очков существует еще много других типов оптических приборов, где человек нашел применение линзам – лупа, бинокль, телескоп, микроскоп. Это самые основные.

Наши глаза – это тоже разновидность оптических приборов. И как подобает таким устройствам, они имеет в своем составе линзы – хрусталики. Внутри глаза, а точнее, внутри ресничного тела, находятся мышцы, которые управляют формой хрусталика – увеличивают или уменьшают его кривизну. Эти мышцы носят название – аккомодационные, поскольку изменение формы хрусталика – это акт аккомодации (приспособления). Эти мышцы связаны с хрусталиком при помощи цинновых связок. Когда мышца расслаблена, возрастает расстояние между ней и хрусталиком, и связки натягиваются – кривизна хрусталика уменьшается. Т.е. хрусталик (линза) становится более вытянутым, более плоским. Мышцы расслабляются — уменьшается ее расстояние до хрусталика, и как следствие – ослабевает натяжение цинновых связок. В итоге, кривизна хрусталика возрастает, так как расслабленные связки его не растягивают.

Обычные линзы, изготавливаемые из стекла, можно сделать любой формы – и выпуклыми (собирающими) и вогнутыми (рассеивающими). Собирающие линзы преобразуют параллельный пучок световых лучей в сходящийся. Рассеивающие, наоборот, превращают параллельный пучок в расходящийся. Хрусталик – это пример собирающей линзы. Степень выпуклости или вогнутости может быть любой, в том числе и очень небольшой, стремящейся к нулю. Но при этом она все же будет существовать.

В оптических приборах используются линзы всевозможных типов – выпуклые, вогнутые, выпукло-вогнутые, двояковыпуклые и двояковогнутые. При этом величина кривизны обеих поверхностей линзы может быть любой – все зависит от конкретных задач, которых стремятся достичь при помощи данного устройства.

Для чего же нужна разная кривизна – и хрусталика, и стеклянных линз? И как это сказывается на особенностях получаемого «на выходе» из линзы изображения (т.е. прошедшего через нее)?

Для ответа на эти и другие вопросы нам понадобится вспомнить опыты И.Ньютона со стеклянными призмами, при помощи которых он разлагал белый свет в спектр. Для чего нам это надо?

Все дело в том, что при прохождении света (фотонов видимого диапазона) через линзу, с ними происходит то же, что и при прохождении их через призму. Фотоны (как любые другие энергетические единицы Вселенной) отклоняются под действием суммарного Поля Притяжения вещества линзы. Та же, как они отклонялись в опытах И. Ньютона под действием суммарного Поля Притяжения вещества призмы.

Соответственно нетрудно сделать вывод о том, что суммарное Поле Притяжения со стороны тех частей линзы (или призмы), где толщина вещества больше, будет тоже больше. В этом и заключается весь «трюк». В основании призмы вещества (стекла) больше. Поэтому в опыте И. Ньютона именно в направлении основания призмы смещаются (преломляются) фотоны, а не к вершине. Тот же самый процесс мы можем наблюдать и в линзе – где вещества больше – туда и отклоняются (преломляются) световые лучи.

Если линза выпуклая, то вдоль ее оси (к центру) вещества будет больше, чем по краям.

Утолщение вдоль оси линзы может быть ничтожным. Однако даже если это так, оно все равно есть. И притяжение со стороны центральной части линзы будет хоть не намного, но больше, чем со стороны краев.

Если линза вогнутая, то по краям толщина вещества будет больше, чем в области оси линзы.

И в этом случае притяжение со стороны вещества краев больше, нежели притяжение центральной области линзы.

Именно поэтому выпуклая (собирающая) линза отклоняет фотоны (и любые другие частицы) ближе к центру своей оси. А вогнутая (рассеивающая) – ближе к краям. А потому изображение, «прошедшее» через выпуклую линзу, уменьшается в размере. И лучи после такой линзы сходятся в одной точке раньше, чем, если бы они не прошли через нее.

Изображение, «прошедшее» через вогнутую линзу, напротив, расширяется, увеличивается, так как фотоны световых лучей притягиваются краями и отклоняются в их направлении.

↑ Причина аккомодации. Близорукость и дальнозоркость

А теперь обратимся к причинам аккомодации и вопросу коррекции близорукости и дальнозоркости. Начнем со второго пункта.

Обратите внимание, в этой части статьи мы приведем вначале известные факты, касающиеся объяснения причин указанных нарушений зрения. Поэтому тем, кому эти факты известны, может стать скучно. Не торопитесь. После этого обещаем вам интересные выводы по этому вопросу.

И близорукость, и дальнозоркость – это заболевания глаз, вызванные изменениями в аккомодационной мышце, контролирующей величину кривизны хрусталика. Как уже говорилось, эта мышца расположена в толще цилиарного тела. От мышцы к хрусталику ведут связки. Когда мышца расслаблена, ее диаметр больше (т.е. она дальше от хрусталика) и связки натянуты. А значит, хрусталик уплощен (его кривизна меньше). Напротив, когда мышца сокращается, она сжимается и приближается к хрусталику. Соответственно, натяжение связок уменьшается и хрусталик округляется (т.е. его кривизна увеличивается).

Так вот, близорукость – это усиление функциональной активности аккомодационной мышцы, обусловленное условиями работы (жизни) и наследственностью. Напряжение глаза, связанное с попытками разглядеть что-либо на близком расстоянии, усиливает близорукость. При близорукости мышца привыкает находиться в напряженном, сокращенном состоянии. Близоруких людей условия труда не стимулируют часто обращать свой взор вдаль, они постоянно что-то разглядывают вблизи. Такие люди либо много читают, либо заняты мелкой «ювелирной» работой.

Ознакомьтесь так же:  Неврит зрительного нерва для врачей

Когда хрусталик не растянут, в центральной части этой линзы увеличивается толщина вещества. Поэтому возрастает суммарное Поле Притяжения со стороны этой области. И фотоны притягиваются и отклоняются к центральной части хрусталика в большей мере, чем при меньшей кривизне хрусталика.
При дальнозоркости человек, напротив, лучше видит вдали, чем вблизи. Дальнозоркость развивается, когда ослаблена функциональная активность аккомодационной мышцы. Она плохо сокращается, и из-за этого связки растягивают хрусталик даже тогда, когда не должны этого делать.

Когда хрусталик растягивается, в центральной части этой линзы уменьшается толщина вещества. А значит, уменьшается суммарное Поле Притяжения со стороны этой области. И фотоны притягиваются и отклоняются к центральной части хрусталика меньше, нежели когда кривизна хрусталика была больше.
Дальнозоркость – это распространенная патология зрения у людей пожилого возраста. И обусловлена она общим ослаблением в старческом организме функциональной активности всех групп мышц.

А теперь обещанное в начале этой части статьи интересное наблюдение.

Давайте задумаемся над следующим вопросом. Зачем хрусталику вообще нужно делать различие между световыми лучами, приходящими с разного расстояния? Для чего хрусталику нужно постоянно перенастраиваться в зависимости от того, смотрит ли человек (или животное) вдаль, либо рассматривает тела вблизи. Ведь, казалось бы, что световые лучи всюду одинаковы. По крайней мере, так утверждает современная наука. Скорость света рассматривается как величина постоянная. А потому скорость световых лучей, приходящих в глаз как издалека, так и с близкого расстояния, в соответствии с утверждениями ученых современности, будет одна и та же. Да и цветовой состав волн один и тот же.

Тогда для чего же нужна аккомодация? Почему хрусталик при неизменной форме не может одинаково хорошо встречать и доводить до сетчатки как лучи издалека, так и ближние лучи? Для чего нужна эта постоянная перенастройка?

Наука аккуратно замалчивает это вопрос. При этом считается, что явление аккомодации детально раскрыто. В данном случае, в который раз можно убедиться в том, что наука зачастую ограничивается констатацией и описанием следствий, оставляя причины явлений нетронутыми.
Человеческий организм – это умный механизм, который постоянно занят подстраиванием себя под окружающие условия. И настройка хрусталика – один из таких примеров.

Приступим к объяснению причины аккомодации. И эта причина достаточно проста.

Световые лучи вовсе не одинаковы по скорости, как это принято считать. Скорость света – это величина не постоянная. Конечно, разница в скорости световых лучей может быть столь незначительной, что ею пренебрегают при измерениях. Но не пренебрегает организм. Он улавливает малейшую разницу в скорости световых лучей и соответствующим образом перенастраивает хрусталик.

Если вы помните, когда мы говорили об инерционном движении элементарных частиц, то выяснили, что частицы Инь движутся равнозамедленно, а частицы Ян равноускоренно. Однако если в составе светового луча есть частицы обоих типов, будет происходить перераспределение энергии. В результате чего Инь ускоряются, а Ян замедляются. И все частицы в потоке движутся с некоей единой суммарной скоростью.

Кроме того, фотоны света, о которых мы ведем речь – это частицы верхних уровней Физического Плана. Эти уровни – это так называемые эфирные подпланы Физического Плана. Среди частиц Физического Плана больше процент частиц Инь. Лучше всего испускаются и отражаются химическими элементами частицы Ян. В составе Физического Плана Ян – это частицы красного цвета. Однако такие частицы составляют только 1/3 от всех частиц. Остальные – Инь. В итоге, в составе любого светового луча больше всего частиц желтого цвета. Они обладают Полем Притяжения. Но все же его величина гораздо меньше, чем у частиц синего цвета. А потому желтые испускаются или отражаются (при нагреве или соударении) гораздо лучше синих. Это было сказано для того, чтобы было понятно, что световые лучи Физического Плана обязательно замедляются с течением времени.

Отсюда можно сделать простой вывод. Скорость лучей, испущенных раньше, меньше скорости лучей, испущенных позднее. Конечно, при условии, что химический состав и температура тел, испускающих и отражающих свет, всюду примерно одинаковы. Можно это правило сформулировать чуть иначе. Скорость лучей, прошедших большее расстояние, меньше скорости лучей, прошедших меньший путь.

А из этого вывода следует, что световые лучи, поступающие в глаз с ближнего расстояния, характеризуются большей скоростью, чем более дальние световые лучи.

Но это еще не окончание объяснения. Какое отношение имеет скорость световых лучей к кривизне хрусталика?

Начнем с того, что в сетчатке глаза человека и животных есть два типа фоторецепторов – колбочки палочки. Колбочки, в отличие от палочек, осуществляют более детальный анализ изображения – можно сказать, они отвечают за резкость, четкость восприятия всех деталей. Палочки, скорее, воспринимают общий образ, силуэт, без различения отдельных мелких деталей.

У большинства дневных животных и у человека колбочки расположены в центральной части сетчатки. Центральная ямка желтого пятна состоит только из колбочек. В то же время на периферии сетчатки палочки численно преобладают над колбочками.

Второе. Вот 2-ой главе, посвященной Механике элементарных частиц, мы много внимания уделили особенностям действия на элементарные частицы различных Сил, в том числе и одновременному воздействию разных типов Сил. Когда фотон света, двигаясь по инерции, входит в хрусталик, его траектория преломляется в направлении центральной части этой глазной линзы, так как хрусталик – это двояковыпуклая линза, и в его центральной части вещества больше (а значит, больше и суммарное Поле Притяжения). Чем больше кривизна, тем больше толщина линзы (т.е. тем больше вещества вдоль оси), и тем на больший угол отклонятся световые лучи.

Если вы помните, инерционное движение фотонов происходит по той причине, что в каждом фотоне возникает Сила Инерции. Эта Сила Инерции – это эфир, испускаемый задним полушарием, и заставляющий частицу двигаться вперед. Сила Инерции конкурирует в фотоне с Силой Притяжения со стороны вещества хрусталика. В соответствии с Правилом Параллелограмма. В итоге фотон изменяет направление движения. И его новая траектория будет совпадать с направлением вектора результирующей Силы. Чем больше Сила Инерции, тем больше скорость частицы. Это означает, что в более быстрых световых лучах Сила Инерции больше. И, соответственно, чем больше Сила Инерции, тем больше должна быть Сила Притяжения, для того, чтобы «уравновешивать» Силу Инерции. А как это сделать и для чего это нужно?

Сделать это просто – увеличивая кривизну хрусталика. Чем больше кривизна, тем больше Сила Притяжения. Это позволяет отклонять на необходимый угол световые лучи с большей скоростью. Напротив малая кривизна подходит для более медленных лучей, у которых величина Силы Инерции меньше.

Но для чего это делается? Почему угол преломления лучей должен быть постоянным? Причина этого была названа, когда мы рассказывали о колбочках и палочках. Больше всего колбочек в центральной части глаза. А ведь именно колбочки отвечают за детально четкое рассмотрение тел.

Именно поэтому нормальный организм всегда стремится поддерживать один и тот же угол преломления световых лучей путем изменения формы хрусталика. Такова причина существования аккомодации.

А теперь мы выясним, что же происходит со световыми лучами в близоруком и дальнозорком хрусталике.

Близорукий хрусталик из-за недостаточной сократительной активности аккомодационной мышцы слабо реагирует на стремление организма рассмотреть что-либо вдали. При близорукости кривизна хрусталика оказывается слишком большой для того, чтобы «соответствовать» фотонам, прошедшим большее расстояние, и чья Сила Инерции ослаблена в большей мере. Большая Сила Притяжения близорукого хрусталика (с большей кривизной) рассчитана на большую Силу Инерции фотонов с близкого расстояния. А фотоны с малой Силой Инерции под действием такой большой Силы Притяжения преломляются на больший угол, чем это необходимо для того, чтобы попасть на желтое пятно.

В результате фотоны, проходящие через хрусталик ближе к периферии, преломляясь, попадают на периферию сетчатки, где преобладают палочки. В итоге, больше, чем нужно, фотонов, проходящих через хрусталик (за исключением тех, чья траектория движения совпадает с осью линзы), преломляясь, попадает на периферию сетчатки, где преобладают палочки, а не в области ближе к центру (где колбочки). Именно из-за этого резкость воспринимаемого изображения уменьшается. Из-за этого тела вдали близорукие люди видят нечетко. Однако, снимая напряжение с глаз, отдыхая и рассматривая тела вдали, у них есть возможность улучшить свое зрение.

При дальнозоркости все обстоит с точностью наоборот.

Слабость аккомодационной мышцы ведет к чрезмерному уплощению хрусталика. При дальнозоркости хрусталик недостаточно хорошо реагирует на стремление организма разглядеть что-либо вблизи. Аккомодационная мышца должна сократиться с тем, чтобы расслабить цинновы связки и увеличить тем самым кривизну хрусталика. Этого не происходит, и хрусталик остается уплощенным. В итоге, фотоны, приходящие в глаз с близкого расстояния, и потому обладающие большей силой Инерции, преломляются на угол меньше того, что необходим. А поэтому тоже оказываются ближе к периферии сетчатки, а не к ее центру. Слово «тоже» использовано потому, что при близорукости фотоны также оказываются ближе к периферии. Малая Сила Притяжения дальнозоркого хрусталика рассчитана на фотоны, пришедшие издали и потому обладающие меньшей Силой Инерции.

А когда фотоны приходят с близкого расстояния, их Сила Инерции велика (скорость велика), и поэтому вектор равнодействующей Силы Притяжения и Силы Инерции оказывается больше смещен в параллелограмме к вектору Силы Инерции. Так что, как видите, и в случае близорукости фотоны оказываются ближе к периферии сетчатки (насколько ближе – зависит от тяжести миопии), и при дальнозоркости. С той лишь разницей, что при близорукости, после преломления, они попадают на сторону сетчатки, противоположную стороне хрусталика, через которую они прошли. В то время как при дальнозоркости фотоны оказываются на той же стороне сетчатке, что и сторона хрусталика, через которую они попадают на сетчатку.

Друзья! Хотелось бы услышать Ваше мнение по поводу данной статьи!

About the Author: admin