Распад белка в жкт

Превращения аминокислот под действием микрофлоры кишечника

Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот. Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот. В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмер-каптана, а также нетоксичных для организма соединений: спиртов, аминов, жирных кислот, кетокислот, оксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название «гниение белков в кишечнике». Так, в процессе распада серосодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород H2S и метил-меркаптан CH3SH. Диаминокислоты – орнитин и лизин – подвергаются процессу декарбоксилирования с образованием аминов – путресцина и кадаверина.

Из ароматических аминокислот: фенилаланин, тирозин и триптофан – при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин). Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально. В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3′-фосфоаденозин-5′-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой (см. главу 18). По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты (см. главу 16).

Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсичных веществ, поступающих в организм извне или образующихся в кишечнике из пищевых продуктов в результате жизнедеятельности микроорганизмов.

Справочник химика 21

Химия и химическая технология

Белки переваривание в желудочно-кишечном тракте

Рассматривая обмен веществ, мы излагали отдельно обмен белков, обмен жиров, обмен углеводов и т. п. Однако такое деление является искусственным и диктуется исключительно удобством изложения. В действительности обмен веществ в организме протекает как единое целое при тесном взаимодействии и взаимообусловленности отдельных составляющих его процессов. Даже первый этап обмена — переваривание пищи — представляет собой одновременно протекающий процесс распада белков, жиров и углеводов в желудочно-кишечном тракте. Дальнейшие превращения белков, жиров и углеводов в тканях в процессах промежуточного обмена настолько интимно связаны между собой, что для целого организма обмен, например, белков, изолированный от обмена углеводов, является абстракцией. [c.378]

Переваривание и всасывание нуклеопротеидов, Нуклеопротеиды пищи подвергаются перевариванию в желудочно-кишечном тракте, образуя ряд низкомолекулярных продуктов, всасывающихся в тонком кишечнике. Ферменты, участвующие в расщеплении нуклеопротеидов, а также отдельные этапы этого расщепления недостаточно хорошо изучены. По-видимому, начальным этапом превращений нуклеопротеидов в пищеварительном канале следует считать отщепление нуклеиновой кислоты от белковой части нуклеопротеида. Этот разрыв связи между простетической группой и белком происходит как в желудке, так и в кишечнике. [c.356]

П. участвует в переваривании белков в желудочно-кишечном тракте. При гидролизе белков и полипептидов обладает достаточно широкой специфичностью. Расщепляет практически все белки растит, и животного происхождения за исключением протаминов (глобулярные белки) и кератинов, Гидролизует синтетич. низкомол. пептидные субстраты, а также депсипептиды, проявляя специфичность к гидрофобным аминокислотам. [c.465]

Переваривание белков представляет собой сложный процесс и совершается в несколько этапов. Начинается этот процесс в желудке под действием фермента пепсина. Дальнейший гидролиз пептидов происходит в тонком кишечнике протеазами поджелудочной железы трипсином, химотропсином, карбоксипептидазами. В переваривании пептидов участвуют также ферменты слизистой кишечника аминопептидаза и дипептидазы. Благодаря последовательному воздействию на белковую молекулу всех ферментов желудочно-кишечного тракта белок распадается на аминокислоты, которые всасываются в кровь. [c.160]

Белки, не расщепившиеся в тонком отделе кишечника, подвергаются расщеплению в толстом кишечнике под воздействием пептидаз, которые синтезируются находящейся здесь микрофлорой. Ферменты микрофлоры толстого кишечника способны расщеплять многие аминокислоты пищи с образованием различных токсичных веществ фенола, крезола, индола, сероводорода, меркаптанов и др. Такое превращение аминокислот в толстом кишечнике называется гниением белков. Токсические вещества всасываются в кровь и доставляются в печень, где подвергаются обезвреживанию. Весь процесс переваривания белков в желудочно-кишечном тракте занимает в среднем 8—12 ч после принятия пищи. [c.250]

В организме человека и животных углеводы играют важную роль и выполняют разнообразные функции — они служат источником энергии, являются пластическим материалом клеток, а также используются в качестве исходных продуктов для синтеза липидов, белков и нуклеиновых кислот. Организм человека и животных не способен синтезировать углеводы из неорганических веществ и получает их в готовом виде с различными пищевыми продуктами, главным образом растительного происхождения. Суточная норма потребления углеводов равняется 450—500 г. Углеводы, поступившие в организм, подвергаются перевариванию в желудочно-кишечном тракте й всасываются в кровь в виде моносахаридов, в основном глюкозы. В крови всегда находится олреде-ленное количество глюкозы (3,3—5,5 моль/л). В тканях часть глюкозы откладывается в виде гликогена. [c.120]

Цель занятия закрепить представления о химическом составе желудочного сока и переваривании белка в желудочно-кишечном тракте. Изучить реакции аминокислот по аминогруппе. [c.243]

Важной задачей ученых и специалистов, работающих в области сельскохозяйственной биотехнологии, является создание и внедрение в природные экосистемы желудочно-кишечного тракта животных высокоактивных штаммов микроорганизмов, способных к лучшему перевариванию целлюлозы и других углеводов, растительных белков и липидов, сверхсинтезу незаменимых аминокислот и витаминов. Важное значение имеют исследования по изучению микробных популяций рубца (предже-лудка) жвачных животных, в котором подвергается перевариванию 70—85 % всего сухого вещества корма, проходящего через желудоч-но-кишечный тракт этих жйвотных. [c.295]

Судьба пищеварительных ферментов. При переваривании богатой белками пищи из поджелудочной железы в желудочно-кишечный тракт выделяется большое количество трипсина, химотрипсина и карбоксипептидазы. Хотя преждевременное высвобождение этих ферментов в активной форме в самой поджелудочной железе может вызвать ее тяжелое повреждение, однако эпителиальные клетки тонкого кишечника не страдают в процессе переваривания богатой белками пищи от действия [c.776]

В следующих за этим введением главах обмен белков, углеводов, жиров и т. д. излагаются отдельно. Конечно, такое деление является чисто искусственным и диктуется исключительно удобством изложения. В целом организме и обмен веществ протекает как единое целое отдельные составляющие его процессы тесно сопряжены друг с другом и взаимно обусловлены. Например, уже первый этап обмена—переваривание пищи, представляет сложный непрерывный процесс распада белков, углеводов и жиров в желудочно-кишечном тракте. Дальнейшие превращения этих веществ в тканях в процес- [c.359]

Ознакомьтесь так же:  Тренировка мышц прямой кишки

Индекс Озэра четко коррелирует с биологической ценностью для крыс, свиней и собак, как это показал Митчел [43] на 48 пищевых белках. Однако он не учитывает степень и скорость высвобождения аминокислот в процессе переваривания белков в желудочно-кишечном тракте и поэтому имеет тенденцию к преувеличению экспериментальных значений, особенно в отношении продуктов, подвергшихся термообработке. Тем не менее этот способ полезен для прогнозирования (предварительной оценки) максимального питательного потенциала белка и целенаправленного пополнения рационов. [c.575]

Крахмал и другие полисахариды частично гидролизуются амилазой слюны в ротовой полости. Переваривание полисахаридов и дисахаридов завершается в тонком кишечнике под действием амилазы поджелудочной железы, а также лактазы, сахаразы и мальтазы, секретируемых эпителиальными клетками кишечника. Белки перевариваются в результате последовательного действия сначала пепсина в кислой среде желудка, а затем трипсина и химотрипсина в тонком кишечнике при pH от 7 до 8. Далее короткие пептиды гидролизуются до аминокислот под действием карбоксипептидазы и аминопептидазы. Триацилглицеролы перевариваются липазой поджелудочной железы, превращаясь в 2-мо-ноацилглицеролы и свободные жирные кислоты, которые эмульгируются при помощи желчных кислот и всасываются. Пепсин, трипсин, химотрипсин, карбок-сипептидаза и липаза секретируются в желудочно-кишечный тракт в виде неактивных зимогенов. [c.775]

Слюна не содержит протеолитических ферментов, и переваривание белков начинается в желудке. В желудочно-кишечном тракте (см. рис. 35) белки претерпевают ряд изменений, прнводящ,их их к продуктам, способным к нормальному всасыванию. В желудке белки пищи под влиянием пепсина в присут- [c.362]

Второе отличие между белком, с одной стороны, и смесью аминокислот, с другой, заключается в том, что некоторые промежуточные продукты протеолиза, образующиеся в желудочно-кишечном тракте, имеют, повидимому, определенное биологическое значение. Пептоны, образующиеся при переваривании пепсином или трипсином инсулина, трипсина и некоторых других белков, содержат фактор, необходимый для роста различных штаммов молочнокислых бактерий [50]. Этот фактор, названный стрепогенином, вероятно, образуется в кишечнике и, быть может, имеет значение для роста кишечных бактерий. Строение стрепогенина еще не выяснено в известных пределах он [c.370]

Белки, переваривание в желудочно-кишечном тракте. Расщепление пищевого белка начинается в желудке, где на него действует желудочный сок. В состав желудочного сока входит протеолитический фермент пепсин (мол. масса 34 ООО) и соляная кислота. Содержание соляной кислоты в желудочном соке поддерживает его pH в пределах 1,5—2,5. Это оптимальное значение для действия пепсина. Пепсин (К Смотреть страницы где упоминается термин Белки переваривание в желудочно-кишечном тракте: [c.278] Биохимический справочник (1979) — [ c.14 ]

Переваривание белков в желудочно-кишечном тракте

Переваривание белков в желудочно-кишечном тракте

Переваривание белков начинается в желудке под действием ферментов желудочного сока. За сутки его выделяется до 2,5 литров и он отличается от других пищеварительных соков сильно кислой реакцией, благодаря присутствию свободной соляной кислоты, секретируемой обкладочными клетками слизистой желудка.

Секреция соляной кислоты представляет активный транспорт, осуществляемый протонной АТФ-азой с затратой АТФ.

Роль соляной кислоты:

1. денатурирует белки;

2. стерилизует пищу;

3. вызывает набухание труднорастворимых белков;

4. активирует пепсиноген;

5. создает рН-оптимум для действия пепсина;

6. способствует всасыванию железа;

7. вызывает секрецию секретина в двенадцатиперстной кишке.

В желудочном соке содержатся протеолитические ферменты пепсин, гастриксин и реннин. Главным из них является пепсин. Он вырабатывается главными клетками слизистой желудка в виде профермента пепсиногена. Активация его осуществляется соляной кислотой (медленная) и аутокаталитически пепсином (быстрая) путем отщепления фрагмента полипептидной цепи с N-конца (частичный протеолиз). При этом происходит изменение конформации молекулы и формирование активного центра. Пепсин действует при значениях рН 1,5–2,5 и является эндопептидазой с относительной специфичностью действия, расщепляющей пептидные связи внутри белковой молекулы.

Кроме пепсина в желудочном соке содержится фермент гастриксин, проявляющий протеолитическую активность при рН 3,0–4,0. По-видимому, именно он начинает переваривание белков.

В желудочном соке грудных детей содержится фермент реннин, который имеет большое значение для переваривания белков у грудных детей, т.к. катализирует створаживание молока (превращение растворимого казеиногена в нерастворимый казеин), в результате чего замедляется продвижение нерастворимого казеина в двенадцатиперстную кишку и он дольше подвергается действию протеаз.

Образовавшиеся в результате действия пепсина в желудке полипептиды поступают в двенадцатиперстную кишку, куда выделяется сок поджелудочной железы. Панкреатический сок имеет щелочную реакцию (рН 7,5–8,2), что обусловлено высоким содержанием бикарбонатов. Кислое содержимое, поступающее из желудка нейтрализуется, и пепсин теряет свою активность.

В панкреатическом соке содержатся протеолитические ферменты трипсин, химотрипсин, карбоксипептидаза и эластаза, которые вырабатываются также в виде проферментов. Трипсиноген активируется энтерокиназой (вырабатывается клетками слизистой двенадцатиперстной кишки), переходит в активный трипсин, который активирует все остальные ферменты поджелудочного и кишечного сока. Клетки поджелудочной железы защищены от действия протеаз тем, что ферменты желудочного сока образуются в виде неактивных предшественников, а в панкреас синтезируется особый белок-ингибитор трипсина. В полости ЖКТ протеазы не контактируют с белками клеток, поскольку слизистая оболочка покрыта слоем слизи, а каждая клетка содержит на наружной поверхности плазматической мембраны полисахариды, которые не расщепляются протеазами. Разрушение клеточных белков ферментами желудочного или кишечного сока происходит при язвенной болезни.

Переваривание продуктов протеолиза пищевых белков в тонком кишечнике осуществляется с помощью амино-, ди-, и трипептидаз, которые функционируют преимущественно пристеночно.

Таким образом, конечными продуктами переваривания белков в ЖКТ являются свободные аминокислоты, которые всасываются.

Переваривание белков начинается в желудке

Расщепление белков до аминокислот начинается в желудке, продолжается в двенадцатиперстной кишке и заканчивается в тонком кишечнике. В некоторых случаях распад белков и превращения аминокислот могут происходить также в толстом кишечнике под влиянием микрофлоры.

Протеолитические ферменты подразделяют по особенности их действия на экзопептидазы , отщепляющие концевые аминокислоты, и эндопептидазы , действующие на внутренние пептидные связи.

В желудке пища подвергается воздействию желудочного сока, включающего соляную кислоту и ферменты. К ферментам желудка относятся две группы протеаз с разным оптимумом рН, которые упрощенно называют пепсин и гастриксин . У грудных детей основным ферментом является реннин .

Регуляция желудочного пищеварения

Регуляция осуществляется нервными (условные и безусловные рефлексы) и гуморальными механизмами. К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин.

Гастрин секретируется специфичными G-клетками:

  • в ответ на раздражение механорецепторов,
  • в ответ на раздражение хеморецепторов (продукты первичного гидролиза белков),
  • под влиянием n.vagus.

Далее гастрин через системный кровоток достигает и стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также он влияет на ECL-клетки и обеспечивает секрецию гистамина.

Гистамин , образующийся в энтерохромаффиноподобных клетках слизистой оболочки желудка (ECL-клетки, фундальные железы), выходит в кровоток и взаимодействует с Н2-рецепторами на обкладочных клетках, увеличивает в них синтез и секрецию соляной кислоты.

Закисление желудочного содержимого (pH 1,0) по механизму обратной отрицательной связи подавляет активность G-клеток, снижает секрецию гастрина и желудочного сока.

Соляная кислота

Одним из компонентов желудочного сока является соляная кислота. В образовании соляной кислоты принимают участие париетальные (обкладочные) клетки желудка, образующие ионы Н + . Источником ионов Н + является угольная кислота, образуемая ферментом карбоангидразой . При ее диссоциациии , кроме ионов водорода, образуются карбонат-ионы НСО3 – . Они по градиенту концентрации движутся в кровь в обмен на ионы Сl – . В полость желудка ионы Н + попадают энергозависимым антипортом с ионами К + (Н + ,К + -АТФаза), хлорид-ионы перекачиваются в просвет желудка также с затратой энергии.

Ознакомьтесь так же:  Кишки чак поланик

При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям, последствиям и требуемой схеме лечения.

Синтез соляной кислоты
Функции соляной кислоты
  • денатурация белков пищи,
  • бактерицидное действие,
  • высвобождение железа из комплекса с белками и перевод в двухвалентную форму, что необходимо для его всасывания. Аналогично высвобождаются и другие металлы,
  • высвобождение различных органических молекул, прочно связанных с белковой частью (гем, коферменты — тиаминдифосфат, ФАД, ФМН, пиридоксальфосфат, кобаламин, биотин), что позволяет витаминам впоследствии всасываться,
  • превращение неактивного пепсиногена в активный пепсин,
  • снижение рН желудочного содержимого до 1,5-2,5 и создание оптимума рН для работы пепсина,
  • после перехода в 12-перстную кишку – стимуляция секреции кишечных гормонов и, следовательно, выделения панкреатического сока и желчи.

Кислая реакция желудочного сока обусловлена, главным образом, присутствием HCl, гораздо в меньшей степени иона H2PO4 , при патологиях (гипо- и анацидное состояние, онкология) свой вклад может вносить молочная кислота.

Совокупность всех веществ желудочного сока, способных быть донорами протонов, составляет общую кислотность. Соляную кислоту, находящуюся в комплексе с белками, мукополисахаридами слизистой оболочки и продуктами переваривания, называют связанной соляной кислотой, оставшуюся часть — свободной соляной кислотой. Содержание свободной HCl подвержено изменениям, в то же время количество связанной HCl относительно постоянно.

Влияние гастрина и гистамина на обкладочные клетки сводится к усилению работы Н + ,К + -АТФазы. Действие гастрина заключается в активации кальций-фосфолипидного механизма передачи сигнала, гистамин действует по аденилатциклазному механизму.

Изменение кислотности в желудке

Гипоацидное состояние развивается при снижении активности и/или количества обкладочных клеток, синтезирующих HCl. В результате могут развиваться самые разнообразные последствия, прямо или косвенно связанные с невыполнением соляной кислотой ее функций:

  • снижение переваривания белков как в желудке, так и в кишечнике,
  • активация процессов брожения в желудке, запах изо рта,
  • активация процесса гниения белков в толстой кишке, бурление в кишечнике и метеоризм,
  • проникновение недопереваренных продуктов в кровь и, как следствие, аллергические реакции,
  • уменьшение высвобождения от белков и возникновение дефицита минеральных веществ (железо, медь, магний, цинк, йод и др),
  • снижение высвобождения и всасывания ряда витаминов – развитие гиповитаминозов (B1, B2, B6, B12, H),
  • снижение синтеза обкладочными клетками внутреннего фактора Касла и снижение всасывания витамина B12,
  • снижение секреции кишечных гормонов и, как следствие, уменьшение выделения желчи и панкреатического сока,
  • нарушение переваривания и всасывания липидов и, как следствие, развитие гиповитаминозов по жирорастворимым витаминам.

Гиперацидное состояние развивается при повышенной активности обкладочных клеток. Может приводить к клиническим проявлениям в виде воспаления стенки желудка, эрозии и язвенной болезни желудка и двенадцатипеперстной кишки.

Пепсин является эндопептидазой , то есть он расщепляет внутренние пептидные связи в молекулах белков и пептидов. Синтезируется в главных клетках желудка в виде неактивного профермента пепсиногена, в котором активный центр «прикрыт» N-концевым фрагментом. При наличии соляной кислоты конформация пепсиногена изменяется таким образом, что «раскрывается» активный центр фермента, который отщепляет остаточный пептид (N-концевой фрагмент), т.е. происходит аутокатализ . В результате образуется активный пепсин, активирующий и другие молекулы пепсиногена.

Превращение пепсиногена в пепсин

Оптимум рН для пепсина 1,5-2,0. Пепсин в основном гидролизует пептидные связи, образованные аминогруппами ароматических аминокислот (тирозина, фенилаланина, триптофана), меньше и медленнее – аминогруппами и карбоксигруппами лейцина , глутаминовой кислоты и т.д..

Связи, расщепляемые пепсином

Гастриксин

Гастриксин по своим функциям близок к пепсину, его количество в желудочном соке составляет 20-50% от количества пепсина. Синтезируется главными клетками желудка в виде профермента и активируется соляной кислотой. Оптимум рН гастриксина соответствует 3,2-3,5 и значение этот фермент имеет при питании молочно-растительной пищей, слабее стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка. Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.

Распад белков в желудочно-кишечном тракте

Распад белков происходит при участии протеолитических ферментов, расщепляющих пептидные связи. Переваривание белков начинается в желудке под влиянием ферментов желудочного сока. Основным ферментом желудочного сока является пепсин, который выделяется в неактивной форме в виде пепсиногена. Пепсиноген активируется соляной кислотой. Оптимум рН для пепсина лежит в пределах 1,5—2. В результате каталитического действия пепсина в желудке образуются пептоны, построенные из достаточно длинных полипептидов. Расщепление под влиянием пепсина может сопровождаться также появлением свободных аминокислот.

Пептоны и нерасщепленные белки поступают в кишечник, где подвергаются действию ферментов поджелудочной железы (трипсина и химотрипсина), относящихся, как и пепсин, к протеиназам. Трипсин выделяется соком поджелудочной железы в неактивной форме, в виде трипсиногена. Последний активируется ферментом эктерокиназой кишечного сока. Оптимум рН для трипсина равен 7—8. Неактивной формой химотрипсина является химотрипсиноген, который активируется трипсином.

Полипептиды, три- и дипептиды, образовавшиеся в результате действия на белки пепсина, трипсина, химотрипсина, подвергаются дальнейшему расщеплению в кишечнике под влиянием ферментов кишечного сока — пептидаз (карбоксипептидазы, аминопептидазы, дипептидаз). В результате последовательного действия всех вышеперечисленных ферментов пищеварительного тракта белковые вещества распадаются до аминокислот, которые всасываются в кровь через стенку кишечника.

Распад белка в жкт

Изотопными методами было установлено, что общий метаболический пул а/к на 2/3 состоит из эндогенных а/к, и на 1/3 из экзогенных. Причем исключительно важное значение имеет именно эндогенный пул; который пополняется:

1) за счет гидролиза и протеолиза старых белков;

2) за счет частичного протеолиза прогормонов и протоферментов (система комплемента);

3) за счет мутировавших дефектных белков;

4) за счет новосинтезированных заменимых а/к.

Пути утилизации аминокислот.

Биосинтез белка (в основном);

Синтез биогенных аминов;

Реакции обезвреживания и энергообмена;

Каждые сутки в организм человека всасывается примерно 100 граммов аминокислот, которые поступают в кровь. Еще 400 граммов аминокислот поступает ежесуточно в кровь в результате распада собственных белков тела. Все эти 500 г аминокислот представляют собой метаболический пул аминокислот. Из этого количества 400 граммов используется для синтеза белков тела человека, а оставшиеся 100 г ежедневно распадаются до конечных продуктов: мочевины, CO2 . В процессе распада образуются также необходимые организму метаболиты, способные выполнять функции гормонов, медиаторов различных процессов и другие вещества (например: меланины, гормоны адреналин и тироксин).

Для белков печени период полураспада составляет 10 дней. Для белков мышц этот период составляет 80 дней. Для белков плазмы крови — 14 дней, печени — 10 дней. Но есть белки, которые распадаются быстро (для a2-макроглобулина и инсулина период полураспада — 5 мин).

4. ПРАКТИЧЕСКАЯ ЧАСТЬ ЗАНЯТИЯ: а) проведение повторного инструктажа по технике безопасности; б) выполнение лабораторных работ.

№1. Количественное определение общей кислотности, общей, свободной и связанной соляной кислоты в одной пробе желудочного сока.

№2. Обнаружение патологических компонентов желудочного сока.

Грицук А.И. Практическая биохимия: Учебное пособие. ч.1. – Гомель, 2002. – С. 66–72.

5.1 Проведение устного теоретического опроса.

5.2 Проведение письменного контроля по теоретическим знаниям.

5.3 Выполнение лабораторных работ.

5.4 Выводы по лабораторным работам. Подведение итогов.

Переваривание белков в желудке

Расщепление белков до аминокислот начинается в желудке, продолжается в двенадцатиперстной кишке и заканчивается в тонком кишечнике. В некоторых случаях распад белков и превращения аминокислот могут происходить также в толстом кишечнике под влиянием микрофлоры.

Протеолитические ферменты подразделяют по особенности их действия на экзопептидазы, отщепляющие концевые аминокислоты, и эндопептидазы, действующие на внутренние пептидные связи.

Ознакомьтесь так же:  Гастрит что уколоть

В желудке пища подвергается воздействию желудочного сока, включающего соляную кислоту и ферменты. К ферментам желудка относятся две группы протеаз с разным оптимумом рН, которые упрощенно называют пепсин и гастриксин. У грудных детей основным ферментом является реннин.

Регуляция желудочного пищеварения

Регуляция осуществляется нервными (условные и безусловные рефлексы) и гуморальными механизмами. К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин.

Гастрин стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также он обеспечивает секрецию гистамина.

Гастрин выделяется специфичными G-клетками:

  • в ответ на раздражение механорецепторов,
  • в ответ на раздражение хеморецепторов (продукты первичного гидролиза белков),
  • под влиянием n.vagus.

Гистамин, образующийся в энтерохромаффиноподобных клетках (ECL-клетки, принадлежат фундальным железам) слизистой оболочки желудка, взаимодействует с Н2-рецепторами на обкладочных клетках желудка, увеличивает в них синтез и выделение соляной кислоты.

Закисление желудочного содержимого подавляет активность G-клеток и по механизму обратной отрицательной связи снижает секрецию гастрина и желудочного сока.

Соляная кислота

Одним из компонентов желудочного сока является соляная кислота. В образовании соляной кислоты принимают участие париетальные (обкладочные) клетки желудка, образующие ионы Н + . Источником ионов Н + является угольная кислота, образуемая ферментом карбоангидразой. При ее диссоциациии , кроме ионов водорода, образуются карбонат-ионы НСО3 — . Они по градиенту концентрации движутся в кровь в обмен на ионы Сl — . В полость желудка ионы Н + попадают энергозависимым антипортом с ионами К + (Н + ,К + -АТФаза), хлорид-ионы перекачиваются в просвет желудка также с затратой энергии.

При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям, последствиям и требуемой схеме лечения.

Функции соляной кислоты

  • денатурация белков пищи;
  • бактерицидное действие;
  • высвобождение железа из комплекса с белками и перевод в двухвалентную форму, что необходимо для его всасывания;
  • превращение неактивного пепсиногена в активный пепсин;
  • снижение рН желудочного содержимого до 1,5-2,5 и создание оптимума рН для работы пепсина;
  • после перехода в 12-перстную кишку — стимуляция секреции кишечных гормонов и, следовательно, панкреатического сока и желчи.

Общая кислотность

Кислая реакция желудочного сока обусловлена присутствием HCl, ионов HPO4 2- и H2PO4 — , при патологиях (гипо- и анацидное состояние, онкология) свой вклад может вносить молочная кислота. Совокупность всех веществ желудочного сока, способных быть донорами протонов, составляет общую кислотность. Соляную кислоту, находящуюся в комплексе с белками и другими продуктами переваривания, называют связанной соляной кислотой, оставшуюся часть — свободной соляной кислотой. Содержание свободной HCl подвержено изменениям, в то же время количество связанной HCl относительно постоянно.

Пепсин является эндопептидазой, то есть он расщепляет внутренние пептидные связи в молекулах белков и пептидов. Синтезируется в главных клетках желудка в виде неактивного профермента пепсиногена, в котором активный центр «прикрыт» N-концевым фрагментом. При наличии соляной кислоты конформация пепсиногена изменяется таким образом, что «раскрывается» активный центр фермента, который отщепляет остаточный пептид (N-концевой фрагмент), то есть происходит аутокатализ. В результате образуется активный пепсин, активирующий и другие молекулы пепсиногена.

Оптимум рН для пепсина 1,5-2,0. Пепсин, не обладая высокой специфичностью, гидролизует пептидные связи, образованные аминогруппами ароматических аминокислот (тирозина, фенилаланина, триптофана), аминогруппами и карбоксигруппами лейцина, глутаминовой кислоты и т. д..

Гастриксин

Его оптимум рН соответствует 3,2-3,5. Наибольшее значение этот фермент имеет при питании молочно-растительной пищей, слабо стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка. Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.

Переваривание белков в желудке

Расщепление белков до аминокислот начинается в желудке, продолжается в двенадцатиперстной кишке и заканчивается в тонком кишечнике. В некоторых случаях распад белков и превращения аминокислот могут происходить также в толстом кишечнике под влиянием микрофлоры.

Протеолитические ферменты подразделяют по особенности их действия на экзопептидазы, отщепляющие концевые аминокислоты, и эндопептидазы, действующие на внутренние пептидные связи.

В желудке пища подвергается воздействию желудочного сока, включающего соляную кислоту и ферменты. К ферментам желудка относятся две группы протеаз с разным оптимумом рН, которые упрощенно называют пепсин и гастриксин. У грудных детей основным ферментом является реннин.

Регуляция желудочного пищеварения

Регуляция осуществляется нервными (условные и безусловные рефлексы) и гуморальными механизмами. К гуморальным регуляторам желудочной секреции относятся гастрин и гистамин.

Гастрин стимулирует главные, обкладочные и добавочные клетки, что вызывает секрецию желудочного сока, в большей мере соляной кислоты. Также он обеспечивает секрецию гистамина.

Гастрин выделяется специфичными G-клетками:

  • в ответ на раздражение механорецепторов,
  • в ответ на раздражение хеморецепторов (продукты первичного гидролиза белков),
  • под влиянием n.vagus.

Гистамин, образующийся в энтерохромаффиноподобных клетках (ECL-клетки, принадлежат фундальным железам) слизистой оболочки желудка, взаимодействует с Н2-рецепторами на обкладочных клетках желудка, увеличивает в них синтез и выделение соляной кислоты.

Закисление желудочного содержимого подавляет активность G-клеток и по механизму обратной отрицательной связи снижает секрецию гастрина и желудочного сока.

Соляная кислота

Одним из компонентов желудочного сока является соляная кислота. В образовании соляной кислоты принимают участие париетальные (обкладочные) клетки желудка, образующие ионы Н + . Источником ионов Н + является угольная кислота, образуемая ферментом карбоангидразой. При ее диссоциациии , кроме ионов водорода, образуются карбонат-ионы НСО3 — . Они по градиенту концентрации движутся в кровь в обмен на ионы Сl — . В полость желудка ионы Н + попадают энергозависимым антипортом с ионами К + (Н + ,К + -АТФаза), хлорид-ионы перекачиваются в просвет желудка также с затратой энергии.

При нарушении нормальной секреции HCl возникают гипоацидный или гиперацидный гастрит, отличающиеся друг от друга по клиническим проявлениям, последствиям и требуемой схеме лечения.

Функции соляной кислоты

  • денатурация белков пищи;
  • бактерицидное действие;
  • высвобождение железа из комплекса с белками и перевод в двухвалентную форму, что необходимо для его всасывания;
  • превращение неактивного пепсиногена в активный пепсин;
  • снижение рН желудочного содержимого до 1,5-2,5 и создание оптимума рН для работы пепсина;
  • после перехода в 12-перстную кишку — стимуляция секреции кишечных гормонов и, следовательно, панкреатического сока и желчи.

Общая кислотность

Кислая реакция желудочного сока обусловлена присутствием HCl, ионов HPO4 2- и H2PO4 — , при патологиях (гипо- и анацидное состояние, онкология) свой вклад может вносить молочная кислота. Совокупность всех веществ желудочного сока, способных быть донорами протонов, составляет общую кислотность. Соляную кислоту, находящуюся в комплексе с белками и другими продуктами переваривания, называют связанной соляной кислотой, оставшуюся часть — свободной соляной кислотой. Содержание свободной HCl подвержено изменениям, в то же время количество связанной HCl относительно постоянно.

Пепсин является эндопептидазой, то есть он расщепляет внутренние пептидные связи в молекулах белков и пептидов. Синтезируется в главных клетках желудка в виде неактивного профермента пепсиногена, в котором активный центр «прикрыт» N-концевым фрагментом. При наличии соляной кислоты конформация пепсиногена изменяется таким образом, что «раскрывается» активный центр фермента, который отщепляет остаточный пептид (N-концевой фрагмент), то есть происходит аутокатализ. В результате образуется активный пепсин, активирующий и другие молекулы пепсиногена.

Оптимум рН для пепсина 1,5-2,0. Пепсин, не обладая высокой специфичностью, гидролизует пептидные связи, образованные аминогруппами ароматических аминокислот (тирозина, фенилаланина, триптофана), аминогруппами и карбоксигруппами лейцина, глутаминовой кислоты и т. д..

Гастриксин

Его оптимум рН соответствует 3,2-3,5. Наибольшее значение этот фермент имеет при питании молочно-растительной пищей, слабо стимулирующей выделение соляной кислоты и одновременно нейтрализующей ее в просвете желудка. Гастриксин является эндопептидазой и гидролизует связи, образованные карбоксильными группами дикарбоновых аминокислот.

About the Author: admin